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ABSTRACT

The paper presents and discusses the development and assessment of an active learning multi-fidelity Krig-
ing method for military vehicle design within the NATO AVT-331 task group on “Goal-driven, multi-fidelity
approaches for military vehicle system-level design.” This Simulation Based Design Optimisation (SBDO)
method exploits the posterior correlation between the low and high-fidelity processes by defining an aug-
mented expected improvement function. Using the method of activation coefficients, it is described how to
obtain and implement the posterior correlation function in a practical way. Subsequently, the implementa-
tion is verified and single- and multi-fidelity methods are applied to analytical benchmarks and hull-shape
optimisation of the bare-hull DTMB 5415 frigate. From these test cases it is concluded that a more stable
convergence is obtained from the multi-fidelity method, when compared to the single-fidelity method using
the same computational budget. Moreover, the multi-fidelity method may result in a computational speedup
depending on the target error, noise levels, evaluations costs and correlation between the models. A signifi-
cant computational speedup is observed for most cases in this study and the speedup improves with increas-
ing problem dimensions.

1.0 INTRODUCTION

Simulation Based Design Optimisation (SBDO) requires a trade-off between computational cost and solver
accuracy. When the cost per evaluation is of interest, surrogate models may be used to mitigate computa-
tional costs considerably, see e.g. [1, 2, 3, 4]. In the past few years, research has been focused on making
these surrogate models more efficient using a combination of accurate high-fidelity solvers and cheap but
less accurate low-fidelity solvers, also called multi-fidelity surrogate models. These methods have been in-
vestigated and applied in the maritime domain for many years now, see for example [5, 6, 7, 8, 9].

When replacing the actual response surface with a surrogate, the accuracy of the analysis is limited by the
surrogate model accuracy. To be useful for design, this accuracy should be either known or adaptively im-
proved to meet certain design objectives. The most common cases are: aiming for global accuracy and aim-
ing for optimisation. In the latter case, the surrogate model is improved to gain efficiency in the optimisation
algorithm. The simulation output is often corrupted with noise which may result from numerical conver-
gence issues, discretisation errors and/or geometrical parametrisation. Actively improving a surrogate model
to facilitate optimisation on noisy black-box functions is a challenge. This process is also called active learn-
ing because it uses the current state to decide at which location in the design space a new evaluation should
be done to be most beneficial for the optimisation. This procedure can be extended to multiple levels of fi-
delity, each having a different cost and noise process. In this case, not only the location in the design space
has to be chosen, also the fidelity level of the new evaluation is a choice that has to be made. Interesting ap-
plications in the maritime field are for example found in [10, 11, 12].

In this contribution, we implement and assess the performance of an active learning multi-fidelity method
applied to numerical benchmarks and hull-shape optimisations of the bare-hull DTMB 5415 model. Using
the adaptive multi-fidelity Kriging method described in [13], we explore practical implementation issues as
well as performance in terms of computational speedup. The method exploits the posterior correlation of
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the high and low-fidelity processes during optimisation and is the backbone of many other adaptive multi-
fidelity methods such as described in [14, 15]. Special attention is given to the estimation of noise during the
optimisation.

2.0 METHOD

The adaptive multi-fidelity Kriging method consists of the following steps:

1) Build an initial multi-fidelity Kriging model using initial Design of Experiments.

2) Find the next location in the design space and the next fidelity level of the evaluation that should be
performed on this point with the goal to improve the efficiency of the method, using an acquisition
function.

3) Update the multi-fidelity Kriging model using the new evaluation. Go to step 2.

In the following section we will describe the multi-fidelity method and how to implement the acquisition
functions corresponding to the different fidelity levels. Next, the adaptive training method is described
in more detail and a test case is used to verify correct implementation. Noise-free and noisy benchmark
problems are subsequently used to investigate the performance of the method and in particular the noise
treatment. Finally, the method is applied to hull optimisation of the DTMB 5415 frigate using the linear
potential flow solver WARP (see, [16]) and using the RANS solver ReFRESCO (see, [17, 18]) with the
objective to minimise resistance. In the latter case, the aft ship is optimised.

2.1 Multi-Fidelity Kriging

We follow the notation of Kennedy and O’Hagan, see [19]. The high fidelity process z1 and low fidelity
process z2 are related by

z1(x) = z2(x) + δ(x), (1)

where the difference process δ(x) is modelled by an independent Gaussian process. In Equation 1 we do not
multiply z2 with a scale parameter ρ and we use the AVT-331 convention on the order of the fidelity levels
(1=high fidelity, 2=low fidelity) which is different from the convention in [19]. The mean (E) and covariance
(cov) of the posterior distribution are given by

E
(
fpl (x)

)
= hl(x)β + tl(x)V

−1(z−Hβ) (2)

cov
(
fpl (x), f
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= cov
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where z = (z1, z2) are the high and low fidelity evaluation outputs on the designs-of-experiments D1 and
D2. In [20], the coefficients a1 and a2 are defined (deviating from Kennedy and O’Hagan) to compute
the uncertainty of the low fidelity process and the difference process. Similarly, we define the activation
coefficients a = (a1, a2) and a′ = (a′1, a

′
2) to compute the posterior moments
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with

hl(x) = (a1, a2),

hl′(x) = (a′1, a
′
2),

tl(x)
T =
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The hyper parameters β = (β1, β2), σ1 and σ2 are determined from the statistical mean and variance of the
observations. The matrices A1 and A2 are the correlation matrices defined by

Al(xi,xj) = exp

(
−

Nd∑
d=1

|xdj − xdi |2

2θ2l,d

)
, (6)

where a different correlation length is allowed for each dimension. The correlation lengths are estimated
using Maximum Likelihood Estimation (MLE). The noise parameters of the difference process ϵ1 and the low
fidelity process ϵ2 are treated as hyper parameters (similar to the correlation lengths) in the MLE procedure.
Each combination of activation coefficients results in certain output of the posterior moments, see Table 1.
This will be referred to as the method of activation coefficients in the following.

Table 1: Meaning of Posterior Moments for Values of a and a′.

a1 a2 a′1 a′2 l l′ Meaning of Ea

(
fpl (x)

)
Meaning of cova,a′

(
fpl (x), f

p
l′(x)

)
1 1 1 1 1 1 Mean of the high-fidelity process Variance of the high-fidelity process
1 1 0 1 1 2 Mean of the high-fidelity process Covariance of the low and high fidelity process
0 1 0 1 2 2 Mean of the low-fidelity process Variance of the low-fidelity process
1 0 1 0 - - Mean of the difference process Variance of the difference process

The posterior covariance of the low and high fidelity process and/or the moments of the difference process
can be used in an adaptive refinement process. The adaptive multi-fidelity method from [20] , for example,
exploits the variance of the low fidelity process and the difference process whereas the covariance between
the high and low fidelity process is used in the multi-fidelity Kriging methods described in [13, 14]. As
mentioned earlier, the posterior covariance is used here to define acquisition functions for each level of
fidelity.

2.2 Adaptive Training Method

The aim is to find the global minimum of a noisy high fidelity black-box function as efficient as possible.
That is, for a given budget, the approximate solution to

x⋆ = argmin
x∈A

f1(x), (7)

should be as close as possible to the actual minimum. Given a finite sequence of n approximations x1...xn,
the best approximation is defined by

x⋆ = argmin
x∈{x1,x2,...,xn}

Ea(f
p
1 (x)) with a = (1, 1). (8)
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To find the next sample, the expected improvement acquisition function

EI(x) = Ea

(
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Vara(f
p
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)
with a = (1, 1),

is used with Φ and ϕ the standard normal cumulative density and probability density functions respectively.
To account for the different levels of fidelity, the improvement function is αugmented, resulting in [13, 14]

EIα(x, l) = EI(x)α1(x, l)α2(x, l)α3(x, l). (10)

The next point xn+1 at fidelity level ln+1 is computed from

(xn+1, ln+1) = argmax
x,l

EIα(x, l), (11)

with the factors α1, α2 and α3 given by

α1(x, l) = cova,a′

(
fp1 (x), f

p
l (x)

)/(√
Vara(f

p
1 (x))

√
Vara(f

p
l (x))

)
(12)

α2(x, l) = 1− ϵl√
Vara(f

p
l (x)) + ϵ2l

(13)

α3(x, l) =
c1
cl
. (14)

The optimisation in Equation 11 is performed using a restarted L-BFGS-B method, see [21]. The adaptive
training method is stopped using a fixed computational budget where the cost of a high fidelity simulation
equals 1.0 and the cost of a low fidelity simulation equals a fraction of the high fidelity cost.

2.2.1 1D Sasena Test Case

To verify a correct implementation the Sasena test case from [13, 22] is repeated. The high and low fidelity
functions are given by

f1(x) = − sin(x)− exp(x/100) + 10 (0 < x < 10) (15)

f2(x) = − sin(x)− exp(x/100) + 10.3 + 0.03(x− 3)2 (0 < x < 10), (16)

The initial design-of-experiments for the low fidelity function x = {0, 2, 4, 6, 8, 10} is used and for the high
fidelity function x = {3.5, 6.5}. Since there is no noise it holds that α2(x, 1) = α2(x, 2) = 1. The cost ratio
is set to α3(x, 2) = 4.0.

The value of the expected improvement function EIα as a well as the posterior correlation α1 just before
the 9th point was added is shown in Figure 1. The expected improvement function is more oscillatory than
reported in [13] but shows good agreement in the relative values of the improvements across the different
levels of fidelity. The posterior correlation α1 is in very close agreement to the one reported in [13].
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Figure 1: Sasena Test Case: Scaled Function EIα (Left) and Posterior Correlation α1 (Right)
Just Before the 9th Point was Added.

3.0 ANALYTICAL OPTIMISATION BENCHMARKS

The analytical benchmarks used in this study are obtained from [23]. A subset of these benchmarks are
listed in Table 2. For each test in the table, three functions with decreasing fidelity are given, with f1 the
function with the highest fidelity. In addition, the domain, the dimensions D, the analytical solutions x̂ and
corresponding function values f(x̂) are given. Three error metrics are defined for these benchmark problems.

Table 2: Analytical Benchmarks.

Test Formulation Domain D x̂ f(x̂)

P1

f1(x) = (6x− 2)2 sin(12x− 4) +N (0, ϵ̂1)
f2(x) = 0.75f1(x) + 5(x− 0.5)− 2 +N (0, ϵ̂2) x ∈ [0, 1] 1 0.7572 -6.0207
f3(x) = 0.5f1(x) + 10(x− 0.5)− 5 +N (0, ϵ̂3)

P2

f1(x) =
∑D−1

j=1 (100(xj+1 − x2j )
2 + (1− xj)

2) +N (0, ϵ̂1) 2 [1,...,1] 0.0000
f2(x) =

∑D−1
j=1 (50(xj+1 − x2j )

2 + (−2− xj)
2)−

∑D
j=1 0.5xj +N (0, ϵ̂2) x ∈ [−2, 2]

f3(x) = (f1(x)− 4−
∑D

j=1 0.5xj)/(10 +
∑D

j=1 0.25xj) +N (0, ϵ̂3) 5 [1,...,1] 0.0000

These characterize the normalized error in the design space, the objective function, and Euclidean distance
in the normalized x-f hyperspace, respectively:

Ex ≡ ||x⋆ − x̂||√
D

(17)

Ef ≡ f(x⋆)− f(x̂)

R1
(18)

Et ≡

√
E2

x + E2
f

2
. (19)

For each problem we study the convergence in these error metrics for the multi- and single-fidelity adaptive
training method. The errors are plotted as a function of the consumed computational budget, which allows
for a fair comparison between the methods.

Using Kriging, several convergence phases can be distinguished, each having their own characteristics. The
convergence of a single-fidelity Kriging predictor has three phases: the uncorrelated, correlated and noise-
inhibited phase, see [5]. During the uncorrelated phase the distance between samples is larger than the
correlation range, making it appear uncorrelated for the Kriging predictor. This phase is characterised by a
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large error and irregularity. As samples are added, the convergence moves into the correlated phase. This
phase is characterised by a larger convergence rate due to the increased resolution and smaller distance
between samples. As soon as the error drops below the noise level of the process, the noise-inhibited phase
starts. The convergence rate of the noise-inhibited phase is typically much smaller than the convergence rate
during the correlated phase. In case of a noise-free process, this phase results in stagnation of the convergence
due to the finite precision of the underlying optimisation routines.

The multi-fidelity Kriging convergence has the same phases as the single-fidelity Kriging convergence, but
the length (not necessarily the convergence rate) of the phases may differ. Because the multi-fidelity adaptive
training method exploits cheap samples, it may have a shorter uncorrelated phase than the single-fidelity
training method which results in a computational speedup. Another mechannism to achieve speedup is the
effect of the (better) initial Kriging model on the error level. In the noise-inhibited phase however, the
speedup becomes much smaller. Eventually, the speedup may disappear entirely.

The usefulness of a multi-fidelity method on practical hull-shape optimisation problems depends on the
desired target error, correlation and evaluation costs of the models. When the target error is located in
the correlated phase of both convergence processes and the correlation/costs of the models is beneficial,
a speedup can be expected. When the target error is located in the uncorrelated or noise-inhibited phase
however, it is highly uncertain what the speedup will be. In the following sections we will explore these
characteristics using noise-free analytical benchmarks (ϵ̂l = 0) and analytical benchmarks including artificial
noise (ϵ̂l ̸= 0) for fidelity levels l = 1, 2, 3. The hat operator is used in the notation for the artificial (true)
noise level in order to distinguish it from the estimated noise levels ϵl defined in Section 2.1.

3.1 Benchmarks Without Noise

Table 3 summarizes the initial design of experiments, budget, dimensions D, function costs cl, function
range R1 and the noise levels ϵ̂l for each test case. The initial design is taken constant and given by a Central
Composite Face-centered (CCF) design of experiments for both the initial high and low fidelity evaluations.
The rationale behind this choice is that it provides a relatively coarse initial sampling plan, leaving more
budget for the adaptive phase of the optimisation method. The function range is obtained from the analytical
extremes reported in [23], using R1 = fmax − fmin. Since there is no noise, we have ϵ̂l = 0 for l = 1, 2, 3.

Table 3: Test Settings for Benchmarks Without Noise.

Test Initial design Budget D c1 c2 c3 R1 ϵ̂1 ϵ̂2 ϵ̂3
P1 CCF/CCF 100 1 1.0 0.5 0.1 2.1851E+1 0.0 0.0 0.0
P2 CCF/CCF 200 2 1.0 0.5 0.1 3.6090E+1 0.0 0.0 0.0

Figure 2 shows convergence results for test P1 and P2. The notation "L1-2" means that the multi-fidelity
method uses high-fidelity level 1 in combination with low-fidelity level 2. Using the Forrester case, the con-
vergence phases can be clearly distinguished and we see that L1-3 convergence results in a shorter uncor-
related phase, while the convergence rate during the correlated phase remains similar to the single-fidelity
result. However, for L1-2 the correlation/costs of the models is not beneficial which results in no observed
speedup. In this case, the convergence is close to the single-fidelity result but the behaviour is more erratic.
Using the 2D Rosenbrock case, it is harder to distinguish the convergence phases. The convergence of L1-3
is found to be more stable than the others and reaches lower values for Ef during the optimisation. The dif-
ferences in performance are, however, not very big. In all cases, the total error Et is dominated by the nor-
malised error in the design space Ex, which is orders of magnitude larger than the normalised error in the
objective function.

Table 4 summarizes the results at the final Computational Cost (CC) of the simulations. The J value in the
last column indicates how many high and low-fidelity evaluations were performed during the optimisations.
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(a) Single-Fidelity and Multi-Fidelity Results Using the Forrester Test Case (P1).

(b) Single-Fidelity and Multi-Fidelity Results Using the 2D Rosenbrock Test Case (P2).

Figure 2: Convergence of Ex, Ef , Et for Test P1 and P2 .

Table 4: Performance Comparisons at the Final Computational Cost.

Test D L CC Ex% Ef% Et% J

P1

1 1 100 1.77E-4 4.00E-8 1.25E-4 100
1 1-2 100 3.20E-4 3.33E-8 2.27E-4 92-16
1 1-3 100 3.69E-4 3.40E-8 2.61E-4 95-50

P2

2 1 200 1.41 3.71E-4 9.96E-1 200
2 1-2 200 1.65 5.99E-5 1.16 193-14
2 1-3 200 2.16 8.60E-5 1.52 198-20

3.2 Benchmarks Including Artificial Noise

Since many processes do not show smooth and clean behaviour for variations of the design parameters but
contain some level of noise [4], it is interesting to find out how well this noise is quantified by the optimisation
algorithm. The experimental setting in [24] is used here. A fixed initial DoE is used, in combination with
random realisations of an artificial noise generator with known probability density function. The experiments
are described in Table 5. The noise generator is a zero mean normal process with standard deviations given
by ϵ̂1 = 0.025R1, ϵ̂2 = 0.05R1 and ϵ̂3 = 0.1R1 for test P1 and ϵ̂1 = 0.025

500 R1, ϵ̂2 = 0.05
500R1 and ϵ̂3 = 0.1

500R1

for test P2 , see also Table 2. The initial rangeR1 is computed from the maximum and minimum high fidelity
function value evaluated on the initial design of experiment. Note that the budgets and solver costs in this
table are different from the budgets and solver costs in Table 3. The convergence metrics of the adaptive

Table 5: Test Settings for Benchmarks Including Artificial Noise.

Test Initial design Budget D c1 c2 c3 R1 ϵ̂1 ϵ̂2 ϵ̂3
P1 CCF/CCF 30 1 1.0 0.2 0.1 1.4904E+1 0.3730E-0 0.7460E-0 1.4920E-0

P2
CCF/CCF 50 2 1.0 0.2 0.1 1.6080E+3 8.0400E-2 1.6080E-1 3.2160E-1
CCF/CCF 65 5 1.0 0.2 0.1 2.0080E+3 1.0040E-1 2.0080E-2 4.0160E-1

training methods applied on the Forrester test case are given in Figure 3. The experiments were repeated
for 50 different random seeds. In order to compute statistics, the errors were linearly interpolated on a
equidistant grid with a resolution equal to the lowest fidelity cost. Subsequently, the median and interquartile
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(a) Single Fidelity Result (Solid) and Multi-Fidelity Result Using Level 1 & 2 (Dashed). The Shaded Area Indicates the
Interquartile Range.

(b) Single Fidelity Result (Solid) and Multi-Fidelity Result Using Level 1 & 3 (Dashed). The Shaded Area Indicates the
Interquartile Range.

Figure 3: Convergence of Ex, Ef , Et Using the 1D Forrester Test Case (P1).

range of the grid errors were computed from the grid values. It can be seen that fidelity level 2 results in a
shorter uncorrelated range of the convergence, but the initial surrogate does not result in a speedup. Fidelity
level 3 does not result in a speedup at all. Because of the relatively high noise level, this result is different
from the result in Section 3.1. We also observe that the sensitivity of the L1-2 multi-fidelity error w.r.t noise
is smaller, having a more narrow interquartile range than observed for the single fidelity error. In addition
to these metrics, a fourth metric is used to measure the accuracy of the noise estimate during the adaptive
training method:

En ≡
∣∣∣∣ϵ− ϵ̂

ϵ̂

∣∣∣∣ . (20)

It measures how close the MLE noise level is to the imposed artifical (True) noise level in the process. From
Figure 4, we observe convergence up to a level of about 10% of the artificial noise level in both cases. Typ-
ically, the noise estimate is better for the high fidelity process and the difference process than for the low-
fidelity process. This results from the fact that high fidelity evaluations are performed close together near
the optimum while low-fidelity evaluations are performed in the initial phase of the multi-fidelity optimisa-
tion. In that way, the low-fidelity noise is "less visible" to the optimiser. The analysis is repeated for the 2D
Rosenbrock test cases, see Figure 5. Fidelity level 2 does not shorten the uncorrelated phase of the multi-
fidelity method, but results in a speedup by the initial surrogate. In the noise-inhibited phase, the conver-
gence of the methods are very similar. Again, no significant speedup is observed using fidelity level 3, but
convergence is observed in the noise-inhibited phase for both methods. A typical characteristic of this test
case is that the optimum is located in a flat valley, resulting in orders magnitude difference in Ex compared
to Ef . The convergence of the noise estimate is shown in Figure 6. The first phase demonstrates the struggle
of the Kriging processes to distinguish noise from actual function trends during the uncorrelated phase. We
also see that convergence of the low-fidelity noise estimate is not required to have convergence of the multi-
fidelity method. The results for the Rosenbrock problem in 5 dimensions are shown in Figure 7. The budget
is not sufficient to capture the noise-inhibited phase, but the end of the uncorrelated phase is visible. A large
speedup due to the initial surrogate is achieved for both fidelity levels, but the L1-2 multi-fidelity method is
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(a) Using Fidelity Level 1 & 2. (b) Using Fidelity Level 1 & 3.

Figure 4: Convergence of En Using the 1D Forrester Test Case (P1).

(a) Single Fidelity Result (Solid) and Multi-Fidelity Result Using Level 1 & 2 (Dashed). The Shaded Area Indicates the
Interquartile Range.

(b) Single-Fidelity Result (Solid) and Multi-Fidelity Result Using Level 1 & 3 (Dashed). The Shaded Area Indicates the
Interquartile Range.

Figure 5: Convergence of Ex, Ef , Et Using the 2D Rosenbrock Test Case (P2).

still more efficient than the L1-3 method. As computational cost increases the benefit of the multi-fidelity
methods diminishes, to become zero in the noise-inhibited phase. Compared to the previous D = 2 case,
we observe a larger speedup during the uncorrelated phase. The typical bumpy behaviour of the noise es-
timate during the uncorrelated phase is shown in Figure 8. While the multi-fidelity noise estimates already
settle, the single-fidelity estimate is far from converged. The multi-fidelity convergence behaviour is found
to be more stable than the single-fidelity convergence behaviour. This is an additional advantage of the adap-
tive multi-fidelity Kriging method. Table 6 summarizes the errors at the end of the computational budgets.
As was pointed out, the speedup depends on the target error and in which phase of the Kriging convergence
this target error is located. A large speedup may be present, which may vanish entirely in the noise inhib-
ited convergence phase. End-budget error comparisons are therefore dangerous for conclusions on compu-
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(a) Using Fidelity Level 1 & 2. (b) Using Fidelity Level 1 & 3.

Figure 6: Convergence of En Using the 2D Rosenbrock Test Case (P2).

(a) Single Fidelity Result (Solid) and Multi-Fidelity Result Using Level 1 & 2 (Dashed). The Shaded Area Indicates the
Interquartile Range.

(b) Single Fidelity Result (Solid) and Multi-Fidelity Result Using Level 1 & 3 (Dashed). The Shaded Area Indicates the
Interquartile Range.

Figure 7: Convergence of Ex, Ef , Et Using the 5D Rosenbrock Test Case (P2).

tational efficiency. For P2 with D = 5 for example the simulation ends near the correlated phase but for P2

with D = 2 the simulation ends in the noise inhibited phase. Clearly, this has an effect on how the errors of
the multi-fidelity method compare to the errors of the single-fidelity method.
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(a) Using Fidelity Level 1 & 2. (b) Using Fidelity Level 1 & 3.

Figure 8: Convergence of En Using the 5D Rosenbrock Test Case (P2).

Table 6: Performance Comparisons at the Final Computational Cost.

Test D L CC median [Ex]% median [Ef ]% median [Et]% median [En]% median [J ]

P1

1 1 30 1.42 3.07 2.45 10.28 30
1 1-2 30 0.54 2.12 1.59 10.22 27-15
1 1-3 30 43.82 32.19 38.58 11.27 29-10

P2

2 1 50 3.74 3.72E-3 2.64 11.85 50
2 1-2 50 4.18 5.21E-3 2.96 10.85 43-35
2 1-3 50 4.02 5.46E-3 2.84 17.17 50-9
5 1 65 24.43 4.11 18.04 11791.72 65
5 1-2 65 21.91 0.19 15.49 61.66 46-95
5 1-3 65 21.72 0.22 15.36 88.44 63-26

4.0 DTMB 5415 HULL SHAPE OPTIMISATION

The DTMB 5415 model is used to demonstrate the method on an actual hull-shape optimisation problem.
This is an open-to-public and early concept of the DDG-51, a USS Arleigh Burke-class destroyer.

4.1 Hull Shape Optimisation Using WARP

The model-scale resistance in calm water at Fr = 0.28 is taken as an optimisation objective. The optimisa-
tion problem is given by

Minimise RT (x) with x ∈ RD,

subject to Lpp(x) = Lpp0,

and to ∇(x) = ∇0,

|∆B(x)| ≤ 0.05B0,

|∆T (x)| ≤ 0.05T0,

V (x) ≥ V0,

xli ≤ xi ≤ xui i = 1, ..., D,

where Lpp denotes the length between perpendiculars, ∇ denotes the displacement, B denotes the Beam, T
denotes the draft and V denotes the reserved volume of the sonar dome. A reduced design space is defined
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using 14 orthogonal basis functions resulting from physics informed/augmented dimensionality reduction,
see [25]. The modified hull shape is obtained from

g(ξ,x) = g0(ξ) +
D∑
i=1

xiψi(ξ), (21)

where ξ are geometrical coordinates, g0 is the original geometry and ψi are orthonormal basis functions.
The linear potential flow solver WARP, ([16]) is used to compute the resistance. The high-fidelity solve
is obtained using 150x150 elements for the free-surface and 180x50 panels on the hull surface resulting in
16.5k elements. The low-fidelity solve is obtained by using 76x25 panels on the free-surface and 90x25
panels on the hull, resulting in 4.2k elements. For the work ratio, we have c1/c2 = 14. A CCF design of
experiments is used for both the initial high- and low-fidelity sampling plans.

Since no analytical solution for this problem is available, the metrics used for this study are

∆x =
||x∗ − x0||√

D
and ∆f =

f(x∗)− f(x0)

f(x0)
. (22)

The convergence results for the 2D problem are shown in Figure 9. Both the single-fidelity and multi-
fidelity optimisations quickly find the minimum, but single-fidelity convergence is more erratic because it
is less sure that the optimum is the actual global one. The multi-fidelity method, however, traded 4 high
fidelity evaluations for 57 low-fidelity evaluations in the initial exploration phase, resulting in a more stable
convergence.

(a) ∆x. (b) ∆f . (c) Noise Levels ϵ.

Figure 9: Shape Optimisation on the 5415 Model with D = 2.

The convergence results for the 5D problem are shown in Figure 10. In this case the multi-fidelity method
clearly outperforms the single-fidelity method. Because of very low expected improvement function values,
the multi-fidelity method was stopped earlier at a budget of 45.96. At that time, 228 low-fidelity evaluations
were done and 30 high-fidelity evaluation to reach a resistance reduction of 6.42%. The single-fidelity
convergence however, behaves erratic and did not reach a stable phase while spending a budget of 350.

The results are summarised in Table 7. Relatively low noise levels are found for the single and multi-fidelity
method but the estimated noise level for the 5-dimensional case is found to be higher than the estimated
noise level for the 2-dimensional case. The cause of this phenomenon is unknown, but could be related to the
convergence of the methods. The estimated single-fidelity noise for D = 5, for example, is about 10 times
larger than for D = 2. Since the single-fidelity convergence for D = 5 is still in the uncorrelated phase, the
noise level is typically large. The multi-fidelity methods converge faster, resulting in a smaller difference in
estimated noise levels.

The waves and hull pressure of the optimised hull obtained with the multi-fidelity method with D = 5
(∆f = −6.4%) is compared to the original hull in Figure 11. Compared to the original hull, the optimised
hull has a softer forward shoulder and less pronounced stern waves.
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(a) ∆x. (b) ∆f . (c) Noise Levels ϵ.

Figure 10: Shape Optimisation on the 5415 Model with D = 5.

Table 7: Results of the 5415 Shape Optimisation Using WARP.

Case D L CC ∆x% ∆f% J f1(x
∗) [N ] ϵ [N ] x∗1 x∗2 x∗3 x∗4 x∗5

Original hull - 1 - 0.00 0.00 - 41.50 - - - - - -
Single-fidelity 2 1 150 36.42 -3.18 150 40.19 3.34E-3 0.652 0.008 - - -
Multi-fidelity 2 1-2 150 36.96 -3.17 146-57 40.19 3.90E-3 0.664 0.002 - - -
Single-fidelity 5 1 350 66.06 +10.0 350 45.64 3.07E-2 0.624 0.742 0.805 0.568 0.521
Multi-fidelity 5 1-2 350 29.98 -6.42 30-228 38.84 7.05E-3 0.023 0.502 0.012 0.245 0.370

Figure 11: Flow around the original and optimised hull (multi-fidelity, D = 5, ∆f = −6.4%).

4.2 Hull Shape Optimisation Using ReFRESCO

A hull blending-technique is used to parameterise the hull shape. A small number of basis hull designs are
chosen which define the scope of the deformations. Let H0 denote the “original” hull shape. The other basis
shapes are then denoted by H1, H2,...,HD, each characterising a type of deformation. Each basis shape Hd

is defined by Nc control points cd,i of a B-spline surface. The parameterised control points are then obtained
by linear interpolation on the control points of the basis designs:

ci(x) = ci([x1, x2, ..., xN ]) = c0,i +
D∑

d=1

xd(cd,i − c0,i) for i = 1, 2, . . . , Nc (23)

Each linear interpolation coefficient represents a contribution of a certain shape deformation of the corre-
sponding basis shape in the "hull-blend". Using this definition, the design space is a N -dimensional unit
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hypercube with the original hull design corresponding to x = 0 and the other basis shapes corresponding to
the corner points of this cube. The basis shapes used in this study are given in Figure 12.

(a) H1: Aft Buttocks S-Shape. (b) H2: Transom Immersion. (c) H3: V-Shape.

Figure 12: Blending Parameterization Design Space Definition.

The resistance is computed using the RANS solver ReFRESCO (see, [17, 18]). The low-fidelity grid consists
of approximately 1.7M cells, whereas the high-fidelity grid consists of approximately 15M cells, see Fig-
ure 13. The computational cost for the low-fidelity solution takes approximately 22 minutes using 240 cores
on 10 nodes where each node has 2 Intel(R) Xeon(R) Gold 6126 CPU @ 2.60 Hz 12 core CPUs. Using the
same resources, the high-fidelity computation takes about 165 minutes to complete (note that the computa-
tional cost includes the grid generation process). This results in a computational cost ratio c1/c2 = 7.5. A
CCF design of experiments is used for both the initial high- and low-fidelity sampling plans. The rationale
behind this choice is that it provides a relatively coarse initial sampling plan, leaving more budget for the
adaptive phase of the optimisation method. A budget of 10 is given to the optimisation procedure.

Figure 13: Visualisation of the LF (Left) and HF (Right) Grids for ReFRESCO.

The optimisation results are collected in Table 8, where D denotes the dimensions of the design space, L the
fidelity levels used, CC the computational budget, J the number of evaluations, f1(x∗) the resistance value
at the optimum design x∗, Fric./Press. the friction and pressure resistance at the optimum, ϵ the estimated
noise level and x∗i the ith element of the vector x∗. The original hull has a full scale resistance of 43.06 N,
where 31.21 N is due to friction and 11.84 N is due to pressure. The adaptive multi-fidelity method finds a
slightly better design. A total resistance reduction is obtained of about 1.05% using the multi-fidelity method
whereas the single-fidelity counterpart obtains 0.93%. The reduction of the pressure resistance is 3.72% and
3.21% respectively, while no significant reduction of the frictional resistance is observed. During the initial
exploration phase of the multi-fidelity optimisation method, the algorithm decides to trade 2 high-fidelity
evaluations for 18 low-fidelity evaluations (resulting in a final budget of 10.42).

The optimal hull shapes corresponding to Table 8 are shown in Figure 14. The optimal hull shapes are very
similar but differ in the amount of V-shape applied to the aft-ship.
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Table 8: Results of the 5415 Shape Optimisation Using ReFRESCO.

Case D L CC ∆x% ∆f% J f1(x
∗) [N ] Fric. [N] Press. [N] ϵ [N ] x∗1 x∗2 x∗3

Original hull - 1 - 0.00 0.00 - 43.06 31.21 11.84 - 0.000 0.000 0.000
Single-fidelity 3 1 10 65.82 -0.93 10 42.66 31.20 11.46 4.73E-7 0.266 1.000 0.478
Multi-fidelity 3 1-2 10 75.83 -1.05 8-18 42.61 31.20 11.40 4.90E-3 0.000 1.000 0.852

(a) Single-Fidelity Method. (b) Multi-Fidelity Method.

Figure 14: Optimal Hull Shapes Corresponding to Table 8.

Figure 15 shows the pressure coefficient on the 5415 hull, before and after the optimisation with the multi-
fidelity method. It can be seen that the optimised hull has a better pressure recovery than the original hull.
This results in a reduced pressure resistance and a small increase in the dynamic trim with 0.01 deg, bow
down.

(a) Original Hull. (b) Optimised Hull.

Figure 15: Pressure Around the 5415 Hull, Before and After the Optimisation.

5.0 CONCLUSIONS

An adaptive multi-fidelity fidelity Kriging method is implemented which is based on augmented expected
improvement functions. Using the method of activation coefficients, it is shown how this active learning
method can be applied in a practical way. A correct implementation of the augmented improvement func-
tions is verified using a verification benchmark. The performance of the method is studied using analytical
benchmarks and hull-shape optimisation problems.

Convergence of noise levels from Maximum Likelihood Estimation (MLE) is demonstrated using noise-free
and noisy benchmarks. In the noise-free case, a low estimated noise level is observed which stagnates at a
certain point during the optimisation. In the noisy case, a noise-inhibited convergence phase is observed.
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From these experiments it is concluded that the adaptive multi-fidelity Kriging method results in a more
stable convergence than the adaptive single fidelity Kriging method. Moreover, the errors from the multi-
fidelity Kriging method are less sensitive to noise in the evaluations. A computational speed-up is not always
achieved, but depends on the target error, noise levels, correlation and evaluation costs of the models. A
significant speedup is observed for most cases in this study. Moreover, the speedup improves with increasing
problem dimensions.

The method is applied to shape optimisation of the bare-hull DTMB 5415 frigate using the linear potential
flow solver WARP and aft-ship optimisation using the RANS solver ReFRESCO with the objective to min-
imise resistance. In both cases it is beneficial to use the adaptive multi-fidelity Kriging method, given the
problem setup. In case of the optimisation with WARP, we observe a more stable convergence when using
the multi-fidelity method. In case of the aft-ship optimisation with the solver ReFRESCO, a better shape
is found for a very tight computational budget equal to the cost of only 10 high-fidelity evaluations in a 3
dimensional design space. This multi-fidelity speedup is obtained using 8 high fidelity evaluations and 18
low-fidelity evaluations. Hence, for a fixed computational budget, a better ship can be designed by combin-
ing low- and high-fidelity computations during adaptive training than would otherwise be obtained by using
high-fidelity computations only.
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